If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+1=82
We move all terms to the left:
3x^2+1-(82)=0
We add all the numbers together, and all the variables
3x^2-81=0
a = 3; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·3·(-81)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*3}=\frac{0-18\sqrt{3}}{6} =-\frac{18\sqrt{3}}{6} =-3\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*3}=\frac{0+18\sqrt{3}}{6} =\frac{18\sqrt{3}}{6} =3\sqrt{3} $
| X(x+1)=2x+3x | | 4x+18-4x=18 | | 4=6+s/3 | | 2u+1=13 | | 0.3+r/7=1.3 | | 2(w-7)-3=1 | | 4x-18-4x=18 | | p+6=-9 | | 80=8(q+7) | | 22=-4x+14 | | (5n+3)=48 | | 13=3q+10q | | 3w+3=1w+7 | | 15=z/9-10 | | 3(x-5)-x=15(x=15) | | 2(n+17)=12 | | 40=11u-6u | | 3x6-12=15 | | 10u-8=82 | | 8z-4z=40 | | -2(p-7)=2 | | 8+8t=-10+6t | | 5=2q−3 | | 13-4p=61 | | 4t=2t+10 | | 24=14=2y | | 4(u-13)=16 | | 2^3x−1=1/1024 | | n+n+80=90 | | 7w+18=53 | | x5+7=250 | | 3(x-5)-x=15 |